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Abstract
Santa Ana winds (SAWs) are associated with anomalous temperatures in coastal Southern California (SoCal). As dry air 
flows over SoCal’s coastal ranges on its way from the elevated Great Basin down to sea level, all SAWs warm adiabatically. 
Many but not all SAWs produce coastal heat events. The strongest regionally averaged SAWs tend to be cold. In fact, some 
of the hottest and coldest observed temperatures in coastal SoCal are linked to SAWs. We show that hot and cold SAWs are 
produced by distinct synoptic dynamics. High-amplitude anticyclonic flow around a blocking high pressure aloft anchored at 
the California coast produces hot SAWs. Cold SAWs result from anticyclonic Rossby wave breaking over the northwestern 
U.S. Hot SAWs are preceded by warming in the Great Basin and dry conditions across the Southwestern U.S. Precipitation 
over the Southwest, including SoCal, and snow accumulation in the Great Basin usually precede cold SAWs. Both SAW 
flavors, but especially the hot SAWs, yield low relative humidity at the coast. Although cold SAWs tend to be associated with 
the strongest winds, hot SAWs tend to last longer and preferentially favor wildfire growth. Historically, out of large (> 100 
acres) SAW-spread wildfires, 90% were associated with hot SAWs, accounting for 95% of burned area. As health impacts of 
SAW-driven coastal fall, winter and spring heat waves and impacts of smoke from wildfires have been recently identified, 
our results have implications for designing early warning systems. The long-term warming trend in coastal temperatures 
associated with SAWs is focused on January–March, when hot and cold SAW frequency and temperature intensity have been 
increasing and decreasing, respectively, over our 71-year record.

1  Introduction

The Santa Ana winds (SAWs) of Southern California 
(SoCal) are notorious for spreading catastrophic wildfires 
(Moritz et al. 2010) and influencing air quality (Aguilera 

et al. 2020). However, SAWs are also known to produce 
extreme heat narrowly focused along the densely populated 
coastal zone (Gershunov and Guirguis 2012; Clemesha 
et al. 2017). The Great Basin—a high inland desert at an 
elevation of > 1200 m (Fig. 1)—is the source region for air 
masses implicated in SAW, that are driven by a regional 
pressure gradient force (PGF) between the Great Basin and 
offshore of California (Hughes and Hall 2010; Abatzoglou 
et al. 2013). Often associated with amplified anticyclonic 
flow aloft (Hatchett et al. 2018), the lower tropospheric 
PGF drives northeasterly winds that warm via adiabatic 
compression as air flows from the elevated terrain of the 
Great Basin over the 3000 m Transverse and lower Penin-
sular ranges to reach maximum temperatures at sea level 
(Fig. 1). The cooler and denser Great Basin air relative to 
the maritime airmass over California promotes accelera-
tion of the wind over the lee-slopes of coastal topography. 
Local and regional variation in SAW results from the range 
of downslope windstorm mechanisms involved, including 
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strong cross-mountain flow and varying atmospheric stabil-
ity structures (Durran 1990; Hughes and Hall 2010; Cao and 
Fovell 2016; Abatzoglou et al. 2021) in addition to kataba-
tic (Hughes et al. 2011; Kolden and Abatzoglou 2018) or 
gap flow (Huang et al. 2009) components of terrain-forced 
downslope winds.

While the typical lower tropospheric regional PGF 
(Fig. 1) is most frequently established during winter and the 
coldest Great Basin airmasses occur when nights are longest 
in December and January, these two main SAW ingredients 
can co-occur any time from early fall to late spring. This 
determines the SAW season (Guzman-Morales et al. 2016). 
In early fall (September–October) and occasionally in late 
spring (April–May), when Great Basin temperatures are only 
moderately cool and synoptic pressure gradients develop, 
SAWs can cause record-breaking coastal heat waves as air 
descends at the dry adiabatic rate (9.8 °C per 1000 m). Many 
of the all-time heat records at coastal SoCal locations were 

registered during fall with the first SAWs of the season. 
For example, on September 25, 1978, SAW drove tempera-
tures to 40.5 °C in downtown Los Angeles.1 Even in winter, 
SAWs can result in anomalous coastal heat that can catch 
vulnerable communities off-guard. On February 27, 2020, 
for example, Los Angeles International Airport recorded 
29.4 °C with 30.6 °C recorded at Camarillo Airport,2 while 
17.9 °C is the normal maximum temperature for SoCal’s 
coastal zone for this day. As we shall see below, over the last 
71 years of record, two of the ten all-time high maximum 
temperatures in SoCal’s coastal zone were associated with 
SAWs.

Surface maximum temperatures are further increased by 
intense insolation under clear skies and the presence of a dry 
airmass. Additionally, synoptic wave breaking and isentropic 
drawdown induced from terrain-influenced circulation fur-
ther warm the surface (Kaplan et al. 2017). Such conditions 
of warm, dry winds and strong solar heating are emblem-
atic of SAWs. Offshore winds and solar heating are espe-
cially important for promoting anomalous heat in spring, 
when coastal sea surface temperatures are seasonably cool 
(~ 13 °C) and persistent coastal low-level cloudiness oth-
erwise cools SoCal’s coastal zone (Clemesha et al. 2016; 
Iacobellis and Cayan 2013). SAWs also have important soci-
etal impacts including on public health. Off-season excessive 
heat has been linked to premature mortality in coastal SoCal 
(Kalkstein et al. 2018). Schwarz et al. (2020) tied heat-health 
hospitalizations directly to SAW events; these impacts may 
be worsened by smoke when SAWs fan wildfires (Aguilera 
et al. 2020). Many coastal communities are composed of 
vulnerable populations with reduced adaptive capacity, e.g. 
no air conditioning (Guirguis et al. 2018), further exacerbat-
ing heat-related SAW impacts.

In addition to impactful heat, SAWs can produce 
extremely cold conditions along the coast. Cold SAWs 
have been documented in the popular press.3 As we show, 
many of the absolute coldest days on record occurred dur-
ing or directly preceding SAWs. To our knowledge, hot and 
cold “flavors of SAWs” have not been documented in the 
academic literature. We therefore investigate both flavors 
of SAWs to see what, if any, dynamical differences exist 
between cold and hot SAWs. We initially hypothesized that 

Fig. 1   Geographic setting and topography of the western United 
States (a) along with cross sectional topography (b) along the tran-
sect indicated in a dashed line on the map with point A marking the 
coastal outflow region of SAWs and point A’ marking the northern-
most extent of the Great Basin—the region of origin for air masses 
feeding the SAWs

1  https://​www.​clima​tespy.​com/​clima​te/​summa​ry/​united-​states/​calif​
ornia/​los-​angel​es-​intl/​septe​mber/​1978.
2  https://​www.​latim​es.​com/​calif​ornia/​story/​2020-​02-​27/​thurs​days-​
heat-​wave-​might-​break-​some-​recor​ds-​in-​south​ern-​calif​ornia.
  https://​www.​ocreg​ister.​com/​2020/​02/​27/​record-​setti​ng-​pushes-​into-​
south​ern-​calif​ornia-​but-​cooli​ng-​trend-​on-​its-​way/.
3  https://​abc7.​com/​south​ern-​calif​ornia-​weath​er-​cold-​winds-​freez​ing-​
tempe​ratur​es/​59028​52/.
  https://​www.​latim​es.​com/​calif​ornia/​story/​2019-​12-​16/​santa-​ana-​
winds-​and-​cool-​tempe​ratur​es.

https://www.climatespy.com/climate/summary/united-states/california/los-angeles-intl/september/1978
https://www.climatespy.com/climate/summary/united-states/california/los-angeles-intl/september/1978
https://www.latimes.com/california/story/2020-02-27/thursdays-heat-wave-might-break-some-records-in-southern-california
https://www.latimes.com/california/story/2020-02-27/thursdays-heat-wave-might-break-some-records-in-southern-california
https://www.ocregister.com/2020/02/27/record-setting-pushes-into-southern-california-but-cooling-trend-on-its-way/
https://www.ocregister.com/2020/02/27/record-setting-pushes-into-southern-california-but-cooling-trend-on-its-way/
https://abc7.com/southern-california-weather-cold-winds-freezing-temperatures/5902852/
https://abc7.com/southern-california-weather-cold-winds-freezing-temperatures/5902852/
https://www.latimes.com/california/story/2019-12-16/santa-ana-winds-and-cool-temperatures
https://www.latimes.com/california/story/2019-12-16/santa-ana-winds-and-cool-temperatures


2235Hot and cold flavors of southern California’s Santa Ana winds: their causes, trends, and links…

1 3

GB snow cover promotes cooler airmasses that favor cold 
SAWs. Yet we find that snow is only part of an intricate 
reality, which includes fundamentally different synoptic 
setups resulting in hot and cold flavors of SAWs. Improved 
understanding of SAW flavors will result in more accurate 
determination of wildfire risk, more skillful predictions at 
longer lead times, better warnings for impact-based deci-
sion support (Uccellini and Ten Hoeve 2019), more useful 
climate change projections, and improving resilience to the 
greatest impacts of SAWs, including public health and safety 
via thermal extremes and wildfire.

Multi-decade SAW climatologies have been constructed 
and analyzed for climate-scale behavior (Abatzoglou et al. 
2013; Guzman Morales et  al. 2016—hereafter GM’16, 
Rolinski et al. 2019). Focusing mainly on wind, these stud-
ies identified patterns of climate variability in SAW activ-
ity, highlighting regional climate forcings including El 
Niño–Southern Oscillation (ENSO) and the Pacific Decadal 
Oscillation (PDO). Climate change is expected to diminish 
SAW activity (Hughes et al. 2011) by eroding SAW fre-
quency in the early and late season (Guzman Morales and 
Gershunov 2019, hereafter GMG’19) with trends projected 
to emerge early in the twenty-first century. SAW-driven 
coastal temperature anomalies have not been studied and 
their climatology has not been assembled. As the Great 
Basin is projected to warm more rapidly than the coastal 
zone (Cayan et al. 2013), we expect SAW-driven coastal 
temperature extremes may warm at a greater rate than the 
background climate. It is thus timely to understand the past, 
current, and future behavior of Santa Ana winds as well as 
the compound impacts they generate via wildfires (Small 
1995; Westerling et al. 2004; Moritz et al. 2010; Rolinski 
et al. 2016; Kolden and Abatzoglou 2018), air quality (Del-
fino et al. 2009; Leibel et al. 2019; Aguilera et al. 2020a, b), 
and temperature extremes (Schwarz et al. 2020) on coastal 
SoCal—a marine-influenced, densely populated region 
where public health is acutely impacted by heat (Guirguis 
et al. 2014, 2018) and wildfire smoke (Aguilera 2021a; b). 
Our goal here is to understand and describe hot and cold 
flavors of SAWs, their historical climate-scale behavior, their 
drivers, connection to wildfire, and observed trends over the 
past seven decades.

2 � Data and methods

An hourly record, spanning 1948–2012, of dynamically 
downscaled SAW activity on a 10 × 10 km grid was con-
structed, validated against the available observations, ana-
lyzed, and presented by GM’16. The SAW Regional Index 
(SAWRI) was also constructed for SoCal and later updated 
and converted to daily values using a hybrid dynamical-
statistical downscaling of the NCEP/NCAR Reanalysis 1 

(Kalnay et al. 1996) (R1D-SAWRI) by GMG’19. The ver-
sion of R1D-SAWRI used here constrained the number of 
SAW days by spatial extent filtering. Only days with local 
(grid-wise) conditions in at least ~ 60% of the SAW domain 
were considered SAW days. R1D-SAWRI spans January 
1948 to December 2018 (71 years).

We use observed daily maximum and minimum tem-
perature (Tmax and Tmin, respectively) data from First 
Order and Cooperative Observer meteorological observa-
tions interpolated onto a 6 × 6 km grid using inverse dis-
tance weighting of the four nearest stations to each grid cell, 
down-weighting stations close to other stations, and applying 
a fixed lapse rate for interpolating in complex topography 
(Livneh et al. 2013, 2015). Tmax and Tmin anomalies were 
computed relative to their seasonal cycle at each 6 × 6 km 
grid cell. The seasonal cycle was modeled, separately for 
Tmax and Tmin, via double (annual and semi-annual) har-
monics fitted to daily temperatures and regressed out of the 
daily temperature data (Gershunov and Roca 2004). Fol-
lowing GM’16 and GMG’19, we used SAWRI to identify 
and quantify the pattern of coastal warming due to SAWs 
(Fig. 2a, b). A pattern of anomalous warming associated 
with all SAW events is readily apparent along the low-eleva-
tion coastal zone. The region corresponding to the warmest 
20% (Tmax > 1.8 °C) of local temperature anomalies due to 
SAW conditions is the region we refer to as coastal SoCal 
(delineated by black lines in Fig. 2b). We isolate and delin-
eate this spatial pattern via the + 1.8 °C anomaly isotherm 
that corresponds to the 80th percentile of anomalous Tmax 
average during SAW days over the coastal SoCal domain.

The coastal de-seasonalized temperature indices (CTmax 
and CTmin) for SAW and non-SAW days were constructed 
daily by spatial averaging of Tmax and Tmin anomalies over 
the coastal zone delineated in Fig. 2b and over all SAW and 
non-SAW days of the SAW season (September–May). Note 
that SAWs themselves impact the CTmax and CTmin sea-
sonal cycles, with a mean of 4 and 12 SAW days in October 
and December, respectively. Figure 2c presents the resulting 
annual time series along with fitted trend lines. Similarly, we 
compute analogous daily averages of temperature anoma-
lies for the western Great Basin (GBTmax and GBTmin) 
defined as the square region over the Great Basin delineated 
on Fig. 2a—this is the primary region where the SAWs are 
rooted.

We also categorize SAW days into hot and cold SAW 
varieties based on their positive and negative CTmax values 
as well as the extreme 10% hottest and 10% coldest SAW 
days that fall above the 90th and below the 10th percen-
tiles of CTmax, respectively (Fig. 3a). Thus all SAW days 
are classified as hot or cold SAWs according to whether 
the maximum coastal temperature anomaly is positive or 
negative, while the extreme hot and cold SAWs are high-
lighted. When analysis is performed over SAW events (only 
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for duration and minimum relative humidity assessments, 
Figure S1), we classify hot (cold) SAW events based on 
their positive (negative) mean CTmax. Events with mean 
absolute CTmax below the 5th percentile of all event means 
(|CTmax|< 0.27 °C, which amounted to 5% of all SAW 
events) were considered undefined and were discarded from 
analyses focusing on SAW events.

Daily, gridded 4 km resolution snow water equivalent 
(SWE) reanalysis spanning October 1981–September 2018 
(Zeng et al. 2018) was used to compute daily snow cov-
erage for hot and cold SAW days over the western Great 
Basin (Fig. 2a). For each grid cell, we assign 1 and 0 snow 
coverage values for SWE > 0 and SWE = 0, respectively.

Fig. 2   Tmax anomalies during SAW days from 1948 to 2018. a 
Shows composites of Tmax anomaly (color shades), SLP (contours) 
and 10  m R1 wind field (black arrows) over the larger Western US 
region. The SoCal and western Great Basin domains, considered in 
this study, are shown in black boxes. The full extension of the Great 
Basin, as shown on a, is added for reference. b Enlarges the SoCal 
region, inset on a, and shows composites of Tmax (color shades) and 
downscaled wind fields (black arrow). The region delineated with 

thick black lines corresponds to the warmest 20% (Tmax > 1.8  °C) 
of local temperature anomalies due to SAW conditions (coastal 
SoCal). c Shows the annually- and spatially-averaged coastal Tmax 
index (CTmax) for SAW (solid) and non-SAW (dotted) days with fit-
ted linear trends, which are significant with 95% confidence at 0.13 
and 0.23 °C/decade, respectively for SAW and non-SAW days. Cor-
relation between SAW days and non-SAW days CTmax time series 
is 0.46
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Additional data sets include daily precipitation data 
evaluated on the same 6 × 6 km grid as temperature (Livneh 
et al. 2013, 2015) and wildfire observations including start 
dates, acres burned, and fire perimeters from the Califor-
nia Department of Forestry and Fire Protection’s Fire and 
Resource Assessment Program (FRAP: https://​frap.​fire.​ca.​
gov/​frap-​proje​cts/​fire-​perim​eters/). We also use hybrid sta-
tistical–dynamical downscaled relative humidity data (RH) 
produced by a statistical downscaling model (Localized 
Constructed Analogs—LOCA; Pierce et al. 2014, 2015; 
Pierce and Cayan 2015) forced with hourly ERA5 reanalysis 
humidity fields. Since humidity data at the desired 3 km res-
olution is not readily available from observations, we trained 
LOCA with the relative humidity field simulated by the 
WRF model (Skamarock et al. 2008), resulting in a hybrid 
statistical–dynamical downscaling scheme covering the state 
of California. WRF in turn was forced with 6-h data from 
the National Centers for Environmental Prediction (NCEP) 
FNL (Final) Operational Global Analysis (NCEP 2000). The 
purpose of using this hybrid scheme (downscaling ERA54 
using LOCA trained on WRF output) rather than using the 
WRF output directly was to extend the length of the WRF 
output, which was only available over the period 2003–2018 
(16 years), to the full period ERA5 is available, 1979–2019 

(41 years). Our previous analyses of LOCA downscaled 
humidity indicates that errors in the downscaled field with 
respect to the training data are about 0.5% in the mean with 
a RMSE of about 2% (Pierce and Cayan 2015).

The National Weather Service (NWS) identified heat 
waves and wildfires associated with SAWs in “A History of 
Significant Weather Events in Southern California”. This 
report documents remarkable (not comprehensive) cases 
from 1859 to 2017, and is used here for reference purposes 
of our R1D-SAWRI record. We note that every Santa Ana 
wind event associated with wildfires or heatwaves, with the 
exception of a SAW-driven heatwave on 09/26/1963 that 
has been documented in the NWS report, is also detected 
by R1D-SAWRI.

3 � Results

3.1 � Hot and cold SAW flavors

The highest absolute average Tmax along coastal SoCal 
(absolute values of CTmax) typically occurs in September 
(Table S1a). Seven out of the ten absolute hottest CTmax 
days occurred in September, including the overall record 
heat (39.5 °C averaged over SoCal’s coastal zone on Sep-
tember 27, 2010), which was associated with Rossby wave 
breaking and terrain-induced circulations (Kaplan et al. 
2017), but not with a SAW event. Two of the ten abso-
lute warmest CTmax days on our record were associated 

Fig. 3   a Daily CTmax versus SAWRI, extreme SAWRI is depicted 
with a dark red line on the x-axis, and the CTmax thresholds for the 
top 10% hottest and coldest SAW days are marked with red and blue 
lines, respectively, on the y-axis. Heat waves and wildfires associated 
with SAW events from NWS report “A History of significant weather 

events in Southern California” are marked in green circles and red 
diamonds, respectively. b Mean frequency of hot and cold SAW days 
by month. Extreme top 10% hottest and coldest days are depicted in 
bright red and blue sections respectively

4  ERA5 data used in this work was downloaded from the ECMWF 
Copernicus Climate Data Store, https://​doi.​org/​10.​24381/​cds.​adbb2​
d47.

https://frap.fire.ca.gov/frap-projects/fire-perimeters/
https://frap.fire.ca.gov/frap-projects/fire-perimeters/
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.adbb2d47
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with SAWs (Table S1a). The hottest SAW-driven CTmax 
occurred on September 24, 1978, trailing the overall record 
by 1.5 °C. Five of the top ten SAW-associated absolute hot-
test days occurred in September, three in October, one in 
April and one (the second hottest) in June of 1981—a highly 
unusual, extremely late-season SAW event.

The hottest SAWs, relative to seasonal normal conditions, 
however, tend to occur in April–May (Table S2), when they 
create a distinct contrast from otherwise seasonably cool 
temperatures associated with cool coastal sea surface tem-
perature and the onset of coastal low-level cloud season 
(Clemesha et al. 2016; Iacobellis and Cayan 2013). These 
conditions spell a cool start to the Mediterranean dry and 
warm season in coastal SoCal. This seasonal coastal cool-
ness amplifies the relative coastal warm anomalies associ-
ated with hot SAWs. Eight of the ten hottest relative CTmax 
days occurred in April and May; four of them were SAWs.

On the cold side of the SAW spectrum, three of the 
absolute coldest 10 days on record were SAW days. The 
latest such event occurred in December 1990 and was SAW-
related, while the other nine days occurred prior to 1973. 
Five of the 10 coldest SAW days occurred in 1949 from 
three separate SAW events in early January, late January 
and mid-February. The coldest SAWs demonstrate a greater 
range of maximum wind speeds than the hottest SAWs, 
which tend to be on the weaker side (Fig. 3a). For both hot 
and cold days, whether SAWs or not, the greatest anomalies 
are found in CTmax rather than CTmin. We therefore focus 
on CTmax going forward.

A sizable minority (28%) of SAW days are anomalously 
cold (Fig. 3a, b). Cold SAW frequencies peak during peak 
SAW season in December and January when ~ 38% of all 
SAWs were historically cold, with a majority of extreme 
cold SAW days in these months (Fig. 3b). Extreme (top 10%) 
hot SAW days occur most frequently in January and Febru-
ary (~ 0.75 year−1) but early fall and late spring months have 
the highest relative proportion of extreme hot SAW days. 
Hot Santa Anas tend to be longer lasting (~ 4 days on average 
compared to ~ 3 days for the cold SAWs—Figure S1a), with 
slightly longer duration for extremes of both flavors. Hot 
SAWs also tend to be drier in terms of RH than their cold 
counterparts (Figure S1b).

3.2 � Synoptic determinants of hot and cold SAWs

Both hot and cold Santa Ana winds involve broad regions 
of high sea level pressure (SLP) over the interior Western 
U.S. (Figs. 2 and 4). This region of high SLP is centered 
approximately in northern Utah, on the northeastern edge of 
the Great Basin, for hot SAWs (Fig. 4a, b). The extreme hot 
SAW composite displays ~ 5 °C positive temperature anoma-
lies in the northwestern GB and ~ 10 °C at the SoCal coast 
(Fig. 4b). During cold SAWs (Fig. 4c, d), the interior high 

pressure intensifies and expands, splitting into two centers: 
one in eastern Idaho/southwestern Montana and the other 
in the northwestern GB (northwestern Nevada/southeast-
ern Oregon). Besides cold SoCal (negative anomalies of 
5–10 °C), extreme cold SAWs start with cold Tmax anoma-
lies down to nearly − 10 °C in the western GB (Fig. 4d). 
Tmin anomalies in the western GB show the greatest mag-
nitudes, however (Fig. 5). Cold SAWs involve tighter SLP 
gradients extending into California and further north along 
the Sierra Nevada. In addition to temperature anomalies 
observed along the north and central California coast as well 
as the western slope of the Sierra Nevada (Figs. 2a, 4a, c), 
this provides evidence supporting coordination of SAWs—
both hot and cold—with northern California’s Diablo winds 
(Smith et al. 2018a). In SoCal, the northeasterly SAWs and 
their associated PGF values turn slightly more northerly for 
cold compared to hot SAWs (Figs. 4, 5).

The synoptic scale upper-level circulation pattern con-
ducive to cold SAWs displays a positively tilted ridge adja-
cent to the western coast of North America indicative of 
anticyclonic Rossby wave breaking (Ryoo et al. 2013) and 
strong baroclinicity (Fig. 6). Hot SAWs, however, appear 
to be associated with neutrally-tilted high amplitude flow 
around a blocking high centered at the California coast 
(Fig. 6). This behavior is stable from month-to-month across 
the SAW season (Figure S2) and suggests different synoptic 
causes for the two flavors of SAWs: cold SAWs associated 
with transient disturbances (short waves) and planetary wave 
breaking, whereas hot SAWs are linked to stationary plan-
etary waves, specifically anticyclonic flow around a blocking 
high. The coldest SAWs tend to be driven by the strongest 
pressure gradients pushing northeasterly winds into SoCal 
(Figure S3), which tend to be somewhat stronger and more 
northerly than those associated with the weaker hot SAWs 
(Figs. 5 and S3).

3.3 � Southwestern precipitation and the Great Basin 
snow connection

Based on our dynamical interpretation, we expect wide-
spread cold-frontal precipitation in the days preceding cold 
SAWs and dry conditions/limited precipitation preceding 
hot SAWs. This would be consistent with gradual Great 
Basin warming/abrupt cooling prior to hot/cold SAWs 
(Figures S4–S5). Nonetheless, negative Great Basin Tmin 
anomalies still occur during hot SAW days (Figure S5a). 
Figure S6 shows precipitation by month accumulated and 
composited over the five days preceding cold and hot SAWs. 
The entire Western US, including the GB and SoCal, accu-
mulates precipitation on the days preceding cold SAWs. 
Hot SAWs are preceded by precipitation over the north-
western US, while the Southwest remains dry. This is the 
case throughout the SAW season, with the wet/dry contrast 
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particularly pronounced during the most active SAW season 
(November–February).

The majority of the Great Basin (i.e., areas aside from the 
highest mountains) is characterized by ephemeral snowpacks 
that accumulate during storms and later melt, a process that 
can happen multiple times during the cool season (Hatchett 
2021). An element accentuating the difference between hot 
and cold SAWs is additional radiative cooling of airmasses 
during cold SAWs by the ephemerally snow-covered Great 
Basin. Indeed, composite evolutions of snow cover leading 
up to cold and hot SAWs indicates snow depletion/accumu-
lation in advance of hot/cold SAWs (Fig. 7). The coldest 

SAWs tend to start with anomalous positive snow cover 
leading up to the event. However, the sample of extreme 
cold SAWs is severely reduced for this result as most cold 
SAW days occurred in the early half of the record, while the 
snow reanalysis data begins in October 1981.

Precipitation and snowpack data support the distinct 
synoptic setups leading to hot and cold SAWs. Great Basin 
ephemeral snow cover associated with these contrasting 
synoptic dynamics further explains part of the temperature 
differences between the two flavors of SAWs. These find-
ings suggest the risk of wildfire should decline during cold 
SAWs, which tend to be preceded by wetting rains over 

Fig. 4   Tmax anomalies, SLP and wind field composites over the 
Western U.S. as in Fig. 1, but by SAW flavors: a hot (CTmax > 0 °C), 
b top 10% hottest (CTmax > 7.8  °C), c cold (CTmax < 0  °C), and d 

top 10% coldest (CTmax < − 4.9 °C). Tmax anomaly, SLP and winds 
are shown in color shades, contours, and black arrows, respectively. 
The SoCal and the Great Basin domains are shown as in Fig. 2a
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SoCal (Figure S6) that increase fuel moisture. Moreover, 
the transient nature of synoptic disturbances associated with 
cold SAW dynamics should, in principle, make them shorter-
lived than the hot SAWs associated with more stable and 
more persistent circulation regimes.

3.4 � Connection with wildfire

Although some of the strongest SAWs are of the cold variety 
(Fig. 3a), given the tendency of cold SAWs to be preceded 
by wetting rains and hot SAWs to be warmer, drier, and 
of longer duration (Figure S1), we expect larger wildfires 
in SoCal to be more frequently associated with hot SAWs. 
The data corroborate this expectation (Fig. 8). Acres burned 
by fires started during SAW conditions show that 90% of 
the large fires and 95% of the burned area occurred during 
hot SAWs. The maximum acres burned for a single cold 
SAW wildfire is 31,447; all wildfires exceeding this size 
ignited and grew during hot SAW episodes and commonly 
during extreme winds (SAWRI > 90th percentile). Because 
early-season cold SAWs are associated with little preceding 
precipitation, they can also fan already burning wildfires 
that have been ignited previously—this was the case in early 
September 2020, when an early-season cold SAW spread 
wildfires that started during extreme heat (not associated 
with SAWs) events of August.

3.5 � A note on long‑term trends (1948–2018)

The interior Southwest is among the most rapidly warming 
regions of the contiguous US (USGCRP 2018). We there-
fore expect SAWs to reflect this inland warming, imprint-
ing it episodically onto SoCal’s coastal region. CTmax 
displays seasonally (September–May) averaged warming 

trends amounting to 0.9 and 1.6 °C over the entire seven-
decade time period, respectively, for SAW and non-SAW-
days (Fig. 2c). There are fewer SAW than non-SAW days 
resulting in smaller annual samples and greater variability 
of SAW compared to non-SAW CTmax. Moreover, the sea-
sonal SAW CTmax index is biased towards December when 
SAW frequency is highest (GM’16).

Importantly, monthly trends in SAW versus non-SAW 
Tmax display very different seasonalities (Fig. 9). Over the 
71-year record, coastal temperatures associated with SAWs 
have been significantly increasing in January, February and 
March (JFM; mean warming of ~ 3.5 °C). Weaker warming 
trends for non-SAW days were observed over SoCal with 
similar warming across months (Fig. 9a). Monthly tem-
perature trends over the Great Basin (Fig. 9b, c) show the 
same seasonal pattern of warming, focused on JFM during 
SAW days and nights and were of comparable magnitude 
to the CTmax (SAW) trend. On the other hand, October-
December (OND) trends are negative for SAW-associated 
Tmax over the Great Basin. Non-SAW Great Basin Tmax 
does not display significant trends except in March, June and 
July, while non-SAW Tmin trends are positive in all months 
except November, December and February. The strongest 
and most consistent warming is observed for SAW-associ-
ated Tmin over the Great Basin and CTmax (SAW) in JFM. 
Non-SAW Tmin warming is also strongest in January and 
March (Fig. 9c). March displays the most consistent warm-
ing trends observed over the SoCal coast and over the Great 
Basin (Tmax and Tmin) for both SAW and non-SAW days.

Exploring the seasonality of SAW-related CTmax 
trends, we have to consider what is causing the seasonality 
of warming in the Great Basin and the broader intermoun-
tain west. The timing and magnitude of SoCal and Great 
Basin trends is consistent with the strongest observed 

Fig. 5   Box plots showing composites of standardized pressure gradient force (PGF); in zonal (x) direction and meridional (y) directions and 
Great Basin (GB) Tmax and Tmin anomalies conditional on hot and cold SAW days
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warming of inland temperatures, particularly in spring 
(Hoerling et al. 2013). This seasonality of western inland 
warming has been associated with declining snowpack and 
earlier snowmelt as part of spring’s progressively earlier 
start observed since the 1970’s (Cayan et al. 2001). With 
continued warming observed across all months over the 
Southwestern US, snow accumulation has been decreas-
ing as more of the precipitation falls as rain (Knowles 
et al. 2006; Lynn et al. 2020). The warming, accentuated in 
spring, is also causing a tendency for snow to melt earlier 
(Mote et al. 2018). This likely leads to stronger regional 
warming through contemporaneous snow-albedo and 
delayed soil-moisture-related feedback mechanisms. It is 
noteworthy, however, that the Great Basin has not warmed 
as much as the surrounding interior Southwestern U.S., 
particularly in December, when it cooled, and in January 

(Figure S7). In February and March, GB warming was 
on par with the rest of the West. In March, Western U.S. 
warming has been substantial and widespread (Cayan et al. 
2001). Figure S7 corroborates the robustness of this spring 
warming trend.

While the seasonal pattern of GB warming plays an 
important role, the breakdown of causes behind CTmax 
and GB Tmax/Tmin trends may differ by month. The 
relative activity (prevalence and intensity summarized 
in degree days—Fig. 9d) of warm vs cold SAWs appears 
to modulate the nature and seasonal structure of CTmax 
trends. During January and March we see significant posi-
tive and negative trends in both hot and cold SAW activity, 
respectively. February is the only other month that fits into 
this pattern, although not significantly so.

Fig. 6.   500 mb heights compos-
ited on hot and cold SAW days 
(a, b) and on top 10% hot and 
cold SAW days (c, d, respec-
tively)
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4 � Discussion and conclusions

Two distinct flavors of Santa Ana winds emerged from our 
analysis of SoCal coastal temperatures associated with 
SAWs: hot and cold. Extreme expressions of these SAW 
flavors have resulted in some of the hottest and coldest 
temperatures recorded in SoCal’s coastal zone in the past 
71 years. These two flavors of SAWs result from very dif-
ferent synoptic setups and they impact wildfire hazard dif-
ferently. Hot SAWs are associated with high-amplitude 
anticyclonic flow around blocking high-pressure systems 
centered over the California coast setting up a surface south-
westward pressure gradient force directed from Nevada into 
California. The warming of the Great Basin starts a few days 
prior to and peaks a couple of days after SAW onset. In 
contrast, cold SAWs are set up by baroclinic anticyclonic 
Rossby wavebreaking associated with transient cold-frontal 
cyclones moving eastward across the West. Cold SAWs are 
preceded by widespread precipitation over the western US 
and accumulation of snow over the GB followed by a cold 
post-frontal airmass settling into the freshly snow-covered 
GB prior to the onset of cold SAWs. The surface high asso-
ciated with this cold airmass is broader and extends further 
into the western GB, resulting in cold SAWs being some-
what more northerly then their warm northeasterly sisters. 
The strongest SAWs in terms of windspeed tend to be of the 
cold variety, while the driest and longest events tend to be 
of the hot variety.

The differing synoptic origins and land surface conditions 
favored by hot and cold flavors of SAW brings up impor-
tant questions regarding the predictability and mesoscale 
dynamics involved in each SAW flavor. For instance, do the 
transient synoptic waves preceding cold SAW show less pre-
dictability compared to the quiescent anticyclonic condi-
tions associated with hot SAW? How do observed mesoscale 
wind patterns vary between SAW types? Do hot SAW events 
tend to be gustier than cold SAWs by virtue of large-scale 
forcing favoring increased mesoscale gravity wave break-
ing? Are cold SAW events more likely to have flows chan-
nelized down canyons and through terrain gaps (Rolinski 
et al. 2019) due to their stronger katabatic (Hughes and Hall 
2010) component? State-of-the-art reanalysis products such 
as ERA5 (Hersbach et al. 2020) are sufficient to broadly 
identify downslope winds (Abatzoglou et al. 2021), however 

their 25–50 km horizontal resolutions remain too coarse to 
capture the interactions of flow and terrain at the meso-γ 
scale (2–20 km; Thunis and Bornstein 1996). Answering 
these questions can be addressed by applying high-resolution 
numerical weather models to produce regionally downscaled 
climatologies (e.g., Hughes and Hall 2010; Rolinski et al. 
2016; Smith et al. 2018a). Forecast skill metrics for both 
SAW flavors can be calculated and compared using a refore-
cast approach or by evaluating archived operational model 
output (e.g., High Resolution Rapid Refresh Model; Benja-
min et al. 2016). Case studies following the approaches of 
Cao and Fovell (2016) and Fovell and Gallagher (2018) are 
also recommended to test the sensitivity of forecast skill and 
dynamical responses to varying land surface characteristics 
(e.g., snowpack conditions in the Great Basin).

Wildfires in SoCal are clearly partial to hot SAWs 
(Fig. 8). Although cold SAWs tend to be windier, they are 
usually preceded by precipitation over wind- and fire-prone 
coastal topography. Besides not being associated with pre-
cipitation over SoCal, hot SAWs tend to have lower relative 
humidity and are generally longer lasting. These differences 
result in 90% of the SAW-driven wildfires and 95% of the 
area burned being associated with hot SAWs. The impacts 
associated with hot SAWs extend beyond the immediate 
coastal heat, wildfire, and smoke. Many of SoCal’s moun-
tains are highly susceptible to damaging and deadly post-
fire debris flows (Oakley et al. 2017, 2018) and landslides 
(Rengers et al. 2020) for multiple years after wildfire has 
occurred. Changes in fire severity and intensity are also driv-
ing type conversions of native chaparral ecosystems towards 
grasslands, resulting in losses in biodiversity (Syphard et al. 
2018).

In terms of downslope wind-driven anomalous heating 
patterns, both flavors of SAWs appear to be coordinated 
with other downslope wind regimes of California, includ-
ing Sundowner winds of the northern Transverse Ranges 
(Smith et al. 2018b; Hatchett et al. 2018) and Diablo winds 
of Northern California (Smith et al. 2018a). This potential 
coordination needs to be studied in more detail to evalu-
ate onset timing and seasonality differences and spatial 
extents and magnitudes of warming and wildfire occur-
rence. Besides identified regional-scale differences in hot 
and cold SAW direction, the interaction of circulations with 
local topography may amplify how these flavors of SAWs 
influence temperature and wind patterns differently. This 
can be studied with finer-resolved wind data and modeling 
experiments. However, the propensity of cold SAWs to be 
preceded by rain as well as their higher RH and shorter dura-
tion appear to notably diminish the fire hazard compared to 
the hot SAWs that are of longer duration, drier, and warmer.

The hottest ten SAW days have occurred throughout 
our 71-year record, while the coldest SAWs display a clear 
preference for the early decades. This is consistent with the 

Fig. 7   Great Basin snow coverage 15  days before and after SAW 
days. Thick black line marks the median, boxes lower and upper 
limit correspond to the 1st and 3rd quartiles, respectively, and whisk-
ers extend to the farthest extreme values. Colored bars correspond to 
snow cover on SAW days (at x = 0, around which compositing was 
done) for each category, a–d. Red dashed line marks the percentage 
of snow coverage over the Great Basin domain (42%) averaged from 
November to January. e, f Show the differences of cold minus hot 
SAW days and top 10% cold minus hot SAW days, respectively

◂
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strong seasonality of the observed trend in our coastal tem-
perature index, the CTmax, which increased significantly in 
January, February and March, but not in other months. This 
JFM warming amounts to ~ 3.5 °C since mid twentieth cen-
tury and almost twice the background (non-SAW) warming. 
It is produced by a commensurate seasonality of warming in 
the Great Basin during SAW events and a decrease/increase 

in cold/hot SAW activity comprising frequency and inten-
sity. This change may be exacerbated by the gradual loss of 
snow cover in the Great Basin as part of a West-wide trend 
(Knowles et al. 2006; Mote et al. 2018). The JFM CTmax 
warming trend reflects the preference of the coldest SAWs 
for the 1940s–1960s. The hottest SAWs, occurring dispro-
portionately in fall, when no significant long-term trends 

Fig. 8   Histograms of acres burned (a) by wildfires in coastal SoCal that started during hot (red) and cold (blue) SAW episodes. Domain map (b) 
and fire perimeters associated with wildfires occurring during hot and cold SAW days
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have been detected, are spread uniformly over the seven 
decades of record.

The new understanding of SAW flavors allows us to 
ask more informed questions about how SAWs will evolve 
amidst a warming climate to be addressed in future work. In 
view of these results, studies of future SAWs (Hughes et al. 
2011; Miller and Schlegel 2006; Guzman Morales and Ger-
shunov 2019) and consideration of future wildfire risk (Yue 
et al. 2014; Jin et al. 2015; Williams et al. 2019; Goss et al. 
2020) focused on SoCal could be updated to resolve and 

incorporate trends in hot and cold flavors of SAWs, which 
are differentially related to wildfire. The diminishing SAW 
activity projected by GMG’19, specifically, will be revisited 
in future work to nuance those projections with respect to 
SAW flavors. The fuel-drying potential of warming SAWs 
should also be assessed. The winter/spring CTmax warming 
that has occurred already suggests an increasing potential of 
warmer and drier SAWs to dry out coastal vegetation and, 
particularly in anomalously dry winters, enhance the coastal 

Fig. 9   Tmax trends by month in °C per decade over the 71-year 
record averaged over SoCal (a) and the Great Basin Tmax (b) and 
Tmin (c). Monthly trends of cold and hot SAW “activity” measured 
in CTmax degree days (monthly sums of hot and cold CTmax excur-

sions) that reflect both frequency and intensity of hot and cold SAWs 
(d). Red dots mark trends that are statistically significant with 95% 
confidence
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wildfire season even into spring. Such spring wildfires have 
occurred in very hot SAWs in May 2014.5

This work was initially motivated by the public health 
impacts of SAW-driven coastal heat waves (Schwarz et al. 
2020) and SAW-driven wildfire smoke (Leibel et al. 2019; 
Aguilera et al. 2020b, 2021a, b) in SoCal’s densely popu-
lated coastal zone. Impacts from heat waves and wildfires 
compounded in August and September 2020 to harm Cali-
fornia during the preparation of this manuscript and prior 
to the traditional onset time of SoCal’s wind-driven autumn 
wildfire season. These events, further compounded and 
complicated by the SARS-CoV-2 pandemic, highlight the 
urgency of improving our understanding and prediction of 
the key weather ingredients that shape SoCal’s heat waves 
and wildfires. By documenting the underlying mechanisms 
that drive hot and cold SAWs and outlining the instrumental 
influence that SAWs exert on hazardous weather and fire 
extremes in SoCal, we hope that our results will inform the 
implementation of early warning systems to protect vulner-
able coastal communities. As climate change bolsters both 
heat waves (Gershunov and Guirguis 2012) and wildfires 
(Williams et al. 2019; Goss et al. 2020) in California, evolv-
ing integrated early warning systems are urgently needed to 
mitigate risks to public health and to improve emergency 
preparedness to these increasingly prevalent risks. This work 
is a step towards that goal in California and other regions of 
the world with similar exposures and possibly even greater 
vulnerabilities to extreme weather events.
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